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Abstract

Translation of nanotherapeutics from preclinical research to clinical application is

difficult due to the complex and dynamic interaction space between the

nanotherapeutic and the brain environment. To improve translation, increased insight

into nanoformulation-brain interactions in preclinical research is necessary. We

developed a nanoformulation-brain database and wrote queries to connect the com-

plex physical, chemical, and biological features of neurotherapeutics based on experi-

mental data. We queried the database to select nanoformulations based on specific

physical characteristics that enable effective penetration within the brain, including

size, polydispersity index, and zeta potential. Additionally, we demonstrate the ability

to query the database to return select nanoformulation characteristics, including

nanoformulation methodology or methodological variables such as surfactant, poly-

mer, drug loading, and sonication times. Finally, we show the capacity of our data-

base to produce correlations relating nanoparticle formulation parameters to

biological outcomes, including nanotherapeutic impact on cell viability in cultured

brain slices.
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1 | INTRODUCTION

Nanomedicine has achieved limited translation from preclinical

research to clinical application for non-cancer neurological disease.1

To improve translation, it is important to understand the dynamic

interactions between nanomedicine platforms and the brain environ-

ment. Individually, nanomedicine and the brain environment are two

independently complex entities: Nanomedicines are designed to con-

trol physical attributes that define the stability of the nanoformulation

while allowing for drug incorporation and tailored drug release.2,3

Nanomedicine physical and chemical characteristics such as size,

charge, composition, and surface functionality impact interactions

with cells, proteins, and extracellular components within the brain and

ultimately the therapeutic effect.4 Simultaneously, the brain microen-

vironment is heterogeneous from brain region to brain region, and

dynamic during development, aging, and disease, which can affect

nanomedicine delivery to the target destination.5 The multitude of

nanomedicine design parameters and neurobiological factors creates a

large data space for which identification of key nanoparticle-brain

interaction parameters is critical. To manage and query the large data

space for nanoparticle-brain interactions, a nanoformulation database

can assist in organizing and integrating key experimental variables that

might influence the effectiveness of nanotherapeutics in the brain.

The development of a nanoformulation database could improve

understanding of nanoparticle-brain interactions and reduce bottle-

necks in the preclinical to clinical nanotherapeutic translation pipeline.

Although there is limited or non-existent literature on effective

database management for nanoformulations used preclinically, similar

approaches for utilizing databases have existed for decades in compu-

tational cell biology, computational neuroscience, and clinical
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applications.6–9 For example, BioNumbers is a database that stores

and organizes key quantitative features from cell biology.10 However,

the BioNumbers database and many others in the literature are com-

posed mainly via natural language processing of published manu-

scripts and typically contain one specific value per property.

Rather than a database built from natural language processing of

literature, experimental workflows are the foundation for the brain-

nanoformulation database presented herein. Preclinical research data-

bases need management schemas that logically connect

nanoformulation experimental methodologies, which can be highly

repetitive, vary in quality, are prone to rapid iteration and evolution,

and are often research lab or facility-specific.11 High repetition occurs

because a statistically relevant experimental database must record

duplicate experiments with identical or highly similar methodologies

and possibly similar results.12 Additionally, experimental data input

may have incomplete information.13 For example, a batch of particles

may not have been characterized with every available methodology or

even tested in a biological application.

A nanoformulation-brain database must also account for work

from independent researchers with unique workflows.14 Preclinical

research in nanoformulation-biology interfaces is a dynamic endeavor;

a successful database adapts to new methodologies and experiments

so that independent researchers are free to follow expert-driven

insight without being burdened by the database system.15,16 Finally,

an optimal nanoformulation-brain database connects biological out-

come data to methodological data in an easily visualized way for

assessing nanomedicine effectiveness and correlation to physical

characteristics and methodological variables.

Therefore, in this study, we developed an entity-relationship dia-

gram of neurotherapeutic research and then visualized and built a

nanoformulation-brain database for preclinical experimental research.

We loaded the database with experimental nanoformulation and bio-

logical application data, and then we developed hypothesis-driven

queries that return insightful results from the organized data. Our

queries serve four main roles: (1) return all nanoformulations in the

database based on physical characteristics of the formulations,

(2) return all nanoformulations in the database based on methodologi-

cal information, (3) return all nanoformulations in the database from a

specific researcher and with specific characteristics, and (4) return

nanoformulation methodological variables, biological application infor-

mation, and experiment information for drug screening applications.

Finally, we visualized the results of each query to show the variety of

insights gained by the database.

2 | MATERIALS AND METHODS

2.1 | Assessing and organizing data

We first compiled common laboratory procedures and data generated

for formulating and testing nanotherapeutics to develop a process

flow diagram. To begin the process flow diagram, we identified

researchers that are nanoformulation experts in the lab (n = 4). Once

we determined the researchers who would contribute data, we

requested a copy of how they maintain overall formulation records

and a basic description of their working methodology. All researchers

provided independent .csv files of their formulation records and brief

descriptions of workflow. From the .csv files, all variables, including

methodological details, characterization results such as size and zeta

potential (ZP), and researcher details such as name and education

level, were pooled into a list. From the pooled list, we determined

three main experimental variable categories: experimental set-up,

nanoformulation methodology, and biological application with the

researchers' provided descriptions of their working methodologies.

The three main experimental categories became the main units of the

nanoformulation-brain database.

Upon establishing a general unit-based structure for a flow dia-

gram, we obtained data from any researcher in the lab who had per-

formed a nanoformulation experiment, expanding our dataset from

four researchers to 11. We received data in the same format as the

original four independent researchers: a .csv file with all

nanoformulations and related data and a text-based description of

their workflow. The variables were extracted from each researchers'

provided .csv files and sorted into a relevant category based on the

provided descriptive workflow.

The three identified units, nanoformulations, biological application,

and experimental components, became the main units of our process

flow diagram. We then determined the major components of each unit

by sorting common variables into specific experimental methodologies

or protocols. For the nanoformulation unit, formulation methodologies

from each researcher and characterization storage commonalities

informed five main components: nanoprecipitation, single emulsion,

double emulsion, reverse formulation, and nanoparticle characterization.

The nanoparticle characterization components include data from two

techniques, dynamic light scattering and drug loading assays.

The experimental unit contains information about researchers,

collaborators, and a researcher-determined specific experiment. The

information recorded about researchers includes first name, last name,

a unique researcher id, and education level (e.g., graduate student,

undergraduate student, high school student). Collaborator information

includes first name, last name, a unique collaborator id, institution,

and education/job level (e.g., faculty, research staff, graduate student,

postdoctoral fellow).

Nanoformulations were evaluated for biological activity:

nanoformulations were added to cultured organotypic brain slices and

slices underwent a lactate dehydrogenase (LDH) activity assay. The

data from the LDH assay and the information about the Sprague–

Dawley rats used for producing brain slices are included within the

ldh_assay table and the pup_info table accordingly. Information col-

lected about the LDH assay includes a unique biological characteriza-

tion id, an experiment id that correlates with the experiment table, a

specimen id that correlates with the pup_info table, formulation id

that correlates with the nanoformulation table, researcher id that cor-

relates with an individual researcher in the researcher table, date of

completed assay, a descriptive name for the treatment group, and

results for timepoints 1 h, 2 h, 4 h, 8 h, and 1 day.
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2.2 | Entity-relationship diagram

We used LucidChart, a web-based application for flowcharts and dia-

grams, to further organize our nanoformulation data from the process

flow diagram into subcategories formatted into six tables:

nanoformulations, double emulsion, single emulsion, nanoprecipitation,

reverse formulation, and nanoparticle characterization tables (Figure 1).

Then, connections between tables were determined for cardinality and

ordinality, the maximum and minimum time that the row of one table

can be related to the row of another table. Cardinality and ordinality

decisions were based on laboratory practices and visualized in

LucidChart with connecting lines between tables and with notation

style for the appropriate cardinality and ordinality.

The developed entity-relationship diagram (Figure 1) connects

11 individual entity sets, tables of experimental information, and

corresponding variables, across the experimental, biological applica-

tion, and nanoformulation unit operations: researcher, collaborator,

experiment, nanoformulations, single_emulsion. double_emulsion,

nanoprecipitation, reverse_formulation, ldh_assay, pup_info, and

np_charc (Table 1).

A three-column table represents each entity set. The three col-

umns include the status of an attribute as a primary key (PK) or for-

eign key (FK), the attributes or variables of the table, and the data

type of each attribute. There are also lines connecting each FK in an

individual entity-set to the table that uses that FK as a PK. Every

nanoformulation, researcher, collaborator, characterization result,

F IGURE 1 Entity-Relationship diagram for the database. The diagram relates experimental components with tables researcher, experiment,
and collaborator (purple), biological components with tables pup_info and ldh_assay (green), nanoformulations components with
nanoformulations (orange), including single_emulsion, double_emulsion, nanoprecipitation, reverse_formulations tables, and np_charc tables
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biological specimen, and biological characterization result is given at

least one unique key. PKs signify that every key in that entity set is

unique, whereas an FK for an entity set does not have to be unique.

These lines end with cardinality and ordinality visualizations to sym-

bolize the minimum and the maximum number of relationships each

entity set can have with another.

Within the entity-relationship diagram, the experimental group

contains the researcher, collaborator, and experiment tables. The exper-

imental group connects developed nanoformulations, nanoformulation

methodologies, and nanoformulation characterizations to the biological

applications and their associated characterizations.

The nanoformulation group includes a table of basic information

for every nanoformulation, specific information for the four main

methodologies, and a characterization table with any characterization

information from dynamic light scattering or drug loading assays. All

of the information from the nanoformulation entity set for a specific

nanoformulation is also included within the specific methodology

table. Although this introduces some redundancy in the database, we

decided to have separate tables to ease data standardization and que-

rying. Each methodology has different, commonly manipulated vari-

ables for developing nanoformulations making it easier to standardize

data if each methodology has an independent table. Additionally, for

some queries, we only want basic nanoformulation information or

only characterization information without all of the methodological

variables. It is more efficient to search all nanoformulations in the

basic nanoformulations entity set than through each specific method-

ology. Finally, the biological group contains two entity relationships

that connect info about the rat pups for biological applications associ-

ated with specific brain slices or serum. These specimens then con-

nect to the LDH assay variables and results.

2.3 | Data standardization and cleaning of
database input

During the creation of the entity-relationship diagram, laboratory data

informed the attributes for each entity set. All data were obtained in

raw form and standardized for use in the database and to resolve down-

stream issues during querying. Data was tagged with researcher infor-

mation and organized by nanoformulation methodology. For each

methodology identified, all variables from the process flow diagram

were listed and organized into table columns by order in which the vari-

able occurs in the methodology. For example, polymer weight for disso-

lution in the organic phase is measured before measuring the volume of

surfactant used in the aqueous sink condition, and therefore polymer

weight occurs before surfactant volume in the table. Naming styles for

individual samples were converted into a common name, and variables

were standardized to have the same naming convention.

Additionally, attributes that contained semi-structured data, such

as experiment notes, were cleaned of commas. Commas are the cho-

sen delineator for .csv files imported into our database and cannot

exist within variable entries. Once all of the data was cleaned, each

table was loaded as an independent sheet in an Excel workbook and

uploaded to Google Cloud for ease of access by multiple independent

researchers.

2.4 | Local computer-based database

After the entity-relationship diagram was completed in LucidChart,

we exported the schema as PostgreSQL commands to a local com-

puter, with a 2.4 GHz Quad-Core Intel Core i5 processor and 8GB

TABLE 1 Entity-relationship diagram terms and definitions organized by the name of the table or entity-set, a description of the variables
included within the table, a description of the connections to other tables, number of rows in the table, and file size of the table in the database

Table Data description Row count File size

Researcher A record of researchers, including their researcher id, names, and education level. A researcher may

connect to zero or many formulations, characterizations, or overall experiments

11 336 bytes

Collaborator A record of collaborators from the Nance Lab. A collaborator will have one and only one researcher

id

1 110 bytes

Experiment A record of experiments using formulated nanoparticles from the Nance Lab. May contain many

nanoformulations and many biological specimens. Will only have one primary researcher

3 147 bytes

Nanoformulations A record of all nanoformulations within the lab. A nanoformulation may be used in none, one, or

many experiments. A nanoformulation may be characterized in none, one, or many ways, and

characterization methods may be repeated for a specific nanoformulation

721 32 KB

Single_emulsion A methodology for nanoformulation that includes only one emulsion step 171 16 KB

Double_emulsion A methodology for nanoformulation that includes two emulsion steps 126 17 KB

Nanoprecipitation A methodology for nanoformulation that uses solvent displacement for producing nanoparticles 392 29 KB

Reverse_formulation A methodology for nanoformulation that allows higher control of specific physical features 31 2 KB

Ldh_assay A record of characterization for biological specimens using catalase activity assay 88 8 KB

Pup_info A record of characterization for littered animals used as biological specimens, including sex age,

date of birth, date of sacrifice, and weight at sacrifice

9 434 bytes

Np_charc A record of all nanoformulation characterizations, including dynamic light scattering and activity

assays

717 53 KB
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2133 MHz LPDDR3 memory. PostgreSQL was installed using HomeBrew

and accessed through the terminal. The database schema commands

were imported from LucidChart, and a .csv for every individual entity set

was imported into the database using the COPY functions of PostgreSQL

with the top row of the .csv delineating the header for assigning columns

to attributes of the entity set. The entire database is about 200 kilobytes.

All developed queries were run through PostgreSQL on this created data-

base. We turned on timing and ran each query 13 times following the

leave-one-out rule to obtain average times for each query to run (n = 12).

The resulting .csv files from each query are saved onto the same local

computer using additional COPY functionality from PostgreSQL. The SQL

code for creating the database is accessible on GitHub at: https://github.

com/Nance-Lab/nanoformulations-database and specifically the file

nancelabSchema.sql.

2.5 | Snowflake-based cloud database

We used the same PostgreSQL commands exported from LucidChart

for developing the local database to also build a cloud-based database

using Snowflake. In Snowflake, we created a database for the project.

We copied all of our PostgreSQL commands into a worksheet and acti-

vated a size “X-small” data warehouse with 10-min auto-suspension for

running our commands. We then imported all of the CSV data through

the “load table” functionality within the Databases>“database
name”>“table name” window. To upload the data, the source file was

selected from the local computer, and we created a custom file format

for .csv files. The custom file format specifies using commas as column

separators, a new line as row separators, and one line of a header to

skip. With all data successfully uploaded to the database, we adjusted

the WHERE statements of our developed queries to the Snowflake

paths of each table and copied the queries into a worksheet. For evalua-

tion, all queries were run 13 times following the leave one out method-

ology and leaving out the first run for a total of 12 points to evaluate

the average time. The resulting .csv files from each query were down-

loaded onto the computer using the manual “Download or View

Results” button in Worksheets.

2.6 | Statistics

Pairwise correlation of columns from the database was calculated

using a Python package, Pandas, DataFrame.corr functionality.

Pearson was input as the correlation method.

3 | RESULTS AND DISCUSSION

3.1 | Database evaluation

We evaluated the database for the six V's of “Big” Data, volume, variety,

velocity, value, variability, and veracity,17 to show the complexity of the

data (Figure 2). Although the volume of the data is relatively small

(Figure 2A), with about 160 kilobytes of data used for the results of this

publication, there are other features of the data that support the treat-

ment of our brain-nanoformulation data as a “big” data set.18 First, there

is a wide variety of data types, including structured, semi-structured,

unstructured, and temporal data (Figure 2B). Regarding velocity, indepen-

dent researchers update the data multiple times a week to incorporate

new experiments and characterization techniques (Figure 2C). The value

of the data is determined by scientific insight gained, animal lives used,

and the amount of time for data collection (Figure 2D). For our

nanoformulation-brain database, the nanoformulation data were collected

over 6 years while the biological data were collected from nine different

Sprague–Dawley rat pups over the course of 4 months and provides

multi-faceted insight into nanoformulation features, biological features,

and the interactions between nanoformulations and the brain. Variability

for this database is increased because nanoformulations can be applied to

many different brain environments that change according to treatment or

injury, sex, age, and brain region (Figure 2E).19 Additionally, veracity with

neuroscience data is important both ethically and experimentally and is

identified for this study in Figure 2F. Biological data has many ethical con-

siderations, including minimization of life used, sampling bias, and percep-

tion bias.20 Finally, experimental data can have errors and noise due to

natural biological variability, human error, data obtained by an indepen-

dent researcher during a period of training or method optimization, and

input or databasing errors by how the data was added to the database or

queried.20

In addition to evaluating the facets of “big” data, we tested the data-

base both locally and with a cloud-based solution. The decision to host a

database locally or in the cloud depends on multiple factors, including

accessibility, economics, and time. This experimental database is approxi-

mately 160 KB and 2300 rows of data. While this is a significant amount

of information to the lab collected over 6 years and from 11 independent

researchers, volume-wise it is considered a small data set in database

management. Cloud-based services offer access to multiple computers

and locations at a higher economic cost than a local database. However,

the price should be justified by a significant increase in performance. We

tested our local database against the use of Snowflake. Snowflake is a

popular, cloud-based data warehousing application with an online plat-

form.21 With large enough data sets, Snowflake offers an elastic, scalable,

and secure system that significantly improves performance. However,

with the size of the dataset used here, the Snowflake cloud platform took

on average 10 times longer to return results than a local database

(Figure 2G). The larger time per query run is likely because Snowflake was

designed for large volume data from mainly transactional sources. There-

fore, for experimental databases of this size, local hosting is a viable and

efficient option. Accessibility can be improved by hosting the .csv files or

spreadsheets in a cloud platform such as Google Cloud, with occasional

imports to a local database.

3.2 | Hypothesis-driven query development

One specific goal of the database is to organize our nanoformulation

data so that results are readily accessible to independent researchers
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using the database. To increase data accessibility for nanoformulation

researchers, data must be searchable from various viewpoints, includ-

ing biological outcome, nanoformulation methodological variables,

and nanomedicine physical characteristics. The flexible searchability

of a database is made possible through meaningful query develop-

ment. The first step in meaningful query development was determin-

ing relevant results that researchers would consistently want from the

database. Relevant results were determined by discussing the current

hypotheses researchers have about their data but cannot answer effi-

ciently without large data reorganization or increased experimenta-

tion. The variables the researchers needed to study to answer their

hypotheses were recorded. With all variables for specific hypotheses

outlined, we wrote queries that accessed the different units of the

database and returned all specified hypotheses-related variables

and data.

Our queries amplified the capabilities of the database by (1) writ-

ing a series of progressive queries (Queries 1–7) that result in all

nanoformulations that have increasingly specific and scientifically

informed constraints, (2) writing queries 8, 9a, and 9b for an experi-

ment focused on nanoprecipitation effects on surface charge, and that

can return nanoformulations made with specific polymers with or

without drug loading, and (3) writing queries 10a, 10b, and 11 to test

the database as a drug screening platform for the double emulsion

and nanoprecipitation methodologies (Table 2). Each query has three

parts: a SELECT, FROM, and WHERE portion. The SELECT portion

outlines all variables that should be returned by the query. The FROM

portion states all the tables that must be accessed for the information

(Figure 3). The WHERE portion applies constraints and relationships

between the tables. Queries for the local and Snowflake-based data-

base are available on Github at: https://github.com/Nance-Lab/

F IGURE 2 Database evaluation according to the six V's of big data. (A) Volume describes the number of independent researchers,
features, rows, and quantity of data. (B) Variety describes the four major types of data with examples. (C) Velocity has example timelines
with upload points for data and time scale values bolded below each major methodology step. (D) Value describes the time, life, and
insight value of the database. (E) Variability shows the biological factors that affect the fate of nanoparticles and the methodological
factors that affect the features of the nanoparticle. (F) Veracity describes the complexity of errors that can be introduced to the
database. (G) Time for queries to run on a local server compared to Snowflake. Created with BioRender.com
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nanoformulations-database under files nanoformqueries_local.sql and

nanoformqueries_snowflake.sql respectively.

3.3 | Querying nanoformulations for physical
feature and methodological variables

The first main application of our database is to sort and query our

nanoformulation data based on physical nanoformulation characteris-

tics. To show the effectiveness of our database, we began by querying

our nanoformulations without regard to biological information

(Figure 4). Query 0 provides a baseline for the range of sizes, ZPs, and

PDI values associated with the entire set of �700 nanoformulations

included within our database. The results from query 0 include

704 nanoformulations with sizes ranging from 1.7 to 1290 nm, ZPs

ranging from �96.6 to 7.69 mV, and PDIs ranging from 0.01 to 0.96.

Query 1 successfully constrains the list of nanoformulations from

query 0 to 334 nanoformulations with sizes ranging from 50.42

to 99.89 nm. Query 2 further constrains the results to

262 nanoformulations with a size range from 50.42 to 99.47 nm and

a ZP range from �10 to 7.69 mV. While query 3 imposes a third con-

straint on PDI, the query returns 150 results with a size range from

50.78 to 99.47 nm, ZP range of �10 to 0.47 mV, and a PDI range of

0.02–0.20.

Queries 0 through 3 show the ability of the database to select for

specific features of formulated nanoformulations (Figure 4A). Being

able to constrain nanoformulations based on size, ZP, and PDI is an

important feature for experiments in probing and treating neurological

diseases. Nanoparticle size and surface charge can influence nanopar-

ticle passage across the blood–brain barrier and penetration within

TABLE 2 Descriptions of every query with the query number, query description, and the number of rows

Query Description

Resulting

number of rows

Query 0 Selects all nanoformulation, their characterization results, and related researcher information 704

Query 1 Selects all nanoformulations, their characterization results, and related researcher information with a size between

50 and 100 nm

334

Query 2 Selects all nanoformulations, their characterization results, and related researcher information with a size between

50 and 100 nm AND a ZP between �10 and 10 mV

262

Query 3 Selects all nanoformulations, their characterization results, and related researcher information with a size between

50 and 100 nm AND a ZP between �10 and 10 mV AND a PDI between 0 and 0.2

150

Query 4 Selects all nanoformulations made via single emulsion, their characterization results, their formulation

methodologies, and related researcher information with a size between 50 and 100 nm AND a ZP between

�10 and 10 mV AND a PDI between 0 and 0.2

4

Query 5 Selects all nanoformulations made via double emulsion, their characterization results, their formulation

methodologies, and related researcher information with a size between 50 and 100 nm AND a ZP between

�10 and 10 mV AND a PDI between 0 and 0.2

21

Query 6 Selects all nanoformulations made via nanoprecipitation, their characterization results, their formulation

methodologies, and related researcher information with a size between 50 and 100 nm AND a ZP between

�10 and 10 mV AND a PDI between 0 and 0.2

111

Query 7 Selects all nanoformulations made via reverse formulation, their characterization results, their formulation

methodologies, and related researcher information with a size between 50 and 100 nm AND a ZP between

�10 and 10 mV AND a PDI between 0 and 0.2

13

Query 8 Selects all nanoprecipitation nanoformulation methodologies from a specific researcher, based on researcher first

name, that use ‘45 k PLGA’ as the polymer and without loaded drug (Figure 3B)

10

Query 9a Selects all nanoprecipitation nanoformulation methodologies from a specific researcher, based on researcher first

name, that use ‘P80’ (Figure 3C)

6

Query 9b Selects all nanoprecipitation nanoformulation methodologies from a specific researcher, based on researcher first

name, that use ‘DI Water’ (Figure 3C)

6

Query 10a Selects all nanoprecipitation formulations tested in slices with a related lactate dehydrogenase cytotoxicity assay

completed from a specific publication along with the formulation methodologies, animal information, and

researcher information (Figure 4A)

6

Query 10b Selects all double emulsion formulations tested in slices with a related lactate dehydrogenase cytotoxicity assay

completed from a specific publication along with the formulation methodologies, animal information, and

researcher information (Figure 4B)

6

Query 11 Selects all double emulsion information that specifies both sonication time and nanoparticle activity

characterization results along with the formulation methodology's variables and related researcher information

31

Notes: The description column provides a general description of all variables returned or “selected” by each query, which tables the variables were selected

from, and any constraints. The resulting number of rows the total number of results retrieved by each query.

Abbreviation: PDI, polydispersity.
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the brain parenchyma.5 In comparison, PDI is an indicator of particle

size uniformity. Each of these features provides key insight to the

nanoformulations we have access to that are stable, uniform, and can

theoretically transport through the brain to areas of interest.

We additionally are interested in querying for physical features of

databased nanoformulations so that we may obtain the methodolo-

gies and methodological variables that obtained specific physical char-

acteristics. We tested this application by developing queries

4 through 7, which applied the same constraints as query 3 and con-

trolled for specific methodologies: single emulsion, double emulsion,

nanoprecipitation, and reverse formulation (Figure 4A). We found the

largest number of viable formulations with the query that specifically

returned nanoprecipitation formulations followed by double emulsion,

reverse formulation, and single emulsion methodologies. With the

database, we can search for specific characteristics and then pick one

of the four methodologies to get all variables that produced those

nanoparticles. Each methodology has its strengths and weaknesses

that allow for particular tailoring of nanoparticles for transport capaci-

ties or therapeutic loading capacities. Researchers can now efficiently

find previously formulated and characterized nanoparticles and use

them as a starting point for specific tailoring and further optimization.

To test the applicability of our database to nanoformulation

analysis, we developed queries 8, 9a, and 9b. We developed query

8 to study the surface charge effects of surfactant on poly(lactic-

co-glycolic acid) (PLGA) nanoparticles without drug encapsulated.

All resulting formulations obtained through query 8 are

nanoprecipitation methodologies. The query results show the

effect of surfactant chosen for the nanoprecipitation methodology

on the nanoformulations' sizes and ZPs (Figure 3B). Experimen-

tally, we have shown CHA, F68, and PVA produce highly negative,

slightly negative, and neutral nanoparticles, respectively

(Figure 4B). However, to compare the effect of surfactant on nano-

particle surface presentation and subsequent nanoparticle interac-

tions in the brain, nanoparticles made with these surfactants

should have comparable hydrodynamic diameters, preferably

within a range of ±10 nm in diameter (Figure 4B). Query 8 allowed

us to visualize these results and determine the mass of polymer to

use for each formulation to obtain a standard nanoformulation size

with large ZP variation.

Queries 9a and 9b were written to find all formulations of a spe-

cific methodology, nanoprecipitation, that use surfactants and show

the physical characteristics of nanoformulations made with different

polymers. We showed physical characteristics of nanoformulations

from two PLGA polymers—one copolymerized with PEG and the

other without PEG—formulated with a specific surfactant polysor-

bate 80 (P80) while also specifying the presence or absence of a

specific drug loaded into the nanoparticle (Figure 4C). The results

from specific polymers, surfactants, and drug loading demonstrate

the searchability of querying the database. Queries 9a and 9b can be

efficiently changed to include different variable names or encom-

pass fewer variables by quickly altering the strings in the WHERE

clause. The hypothesis-driven queries leave the database explora-

tion to the researcher's expertise without burdening the researcher

with complex and time-consuming data science tasks.

F IGURE 3 Entity-relationship
diagram with query labels. The query
numbers are included in every table they
access. Underlined query labels designate
that the query both accessed that table
and placed some constraint on the results
from that table
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3.4 | Applying the database to enhance drug
screening capabilities

The goal of designing a nanoformulations database for probing and

treating neurological disease is to improve the screening of nan-

otherapeutics by providing insight between formulation variables,

nanoformulation characteristics, biological applications, and visualizing

the connections between them. Organotypic whole-hemisphere (OWH)

brain slice models have been developed as high-throughput screening

methods for nanoformulations.22,23 Partnering OWH brain slice

models with a nanoformulations database improves the connection

between nanoformulation characterization and biological outcome.

We developed queries 10a, 10b, and 11 to obtain all nano-

formulations from the database that were in OWH brain slices for an

individual biocompatibility experiment (Figure 5). Queries 10a and 10b

returned the nanoformulation methodological variables from the

nanoprecipitation (Figure 5A) and double emulsion (Figure 5B) methods.

The nanoprecipitation methodology has a weak negative correlation

between the three physical characteristics—size, ZP, and PDI—of the

nanoformulations and the LDH assay 1-, 2-, 4-, and 8-h times ranging

from �0.27 to �0.38 (Figure 5A). The nanoprecipitation methodology

has a moderate negative correlation between the nanoparticle physical

characteristics—size, ZP, and PDI—for the 1-day LDH assay. In compari-

son, the double emulsion methodology shows increasing correlation

strength between size, PDI, and ZP, as time for the LDH assay

increases: a very weak correlation at 1-h LDH of �0.09, a strong corre-

lation at 2-hours LDH of 0.63, and a very strong correlation at 4-h, 8-h,

and 1-day LDH of 0.91, 0.94, and 0.95, respectively (Figure 5B).

The correlation strength differences between the nanoprecipitation

methodology and double emulsion methodology highlight the complex

effects of nanoformulation methodology on biological outcome. Mean-

while, the heatmaps show a visual representation of the capabilities of

F IGURE 4 (A) Nanoformulation
characteristic values for PDI, ZP, and
size for the first seven queries
developed. (B) Number-average size and
ZP for nanoprecipitation formulations
obtained with query 8 for varying
surfactants: cholic acid sodium salt
(CHA), polyvinyl alcohol (PVA), Pluronic
F68 (F68), and varying polymer

amounts. (C) Number-average size and
ZP for two different polymer types with
1% P80 or DI Water as the
nanoprecipitation sink
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the database for studying nanoformulation and biological outcome

interaction. Specifically, the database enables a quick method to deter-

mine which methodological variables have the largest effect on a spe-

cific biological outcome or characterization. The effectiveness of the

database enables researchers to tailor and alter nanoparticle-based

nanoformulation-brain interactions efficiently.

Additionally, we used query 11 with the database to study the

correlation between nanoparticle methodology, nanoparticle charac-

teristics, and nanoparticle drug activity (Figure 5C). We found a strong

negative correlation of �0.8 between PDI for double emulsion

nanoparticles and nanoparticle activity. Additionally, there is a weak

to moderate correlation between ZP and the nanoparticle activity of

�0.38. We also found moderately negative correlations between

sonication time, size, and PDI ranging from �0.44 to �0.56. The cor-

relation between sonication time and nanoparticle characteristics

shows that the choice of sonication time does affect the size and

homogeneity of the samples without affecting their charge.

Interestingly, while there is a moderate correlation between the

sonication time and both PDI and size, and a strong correlation

between PDI and nanoparticle activity, there is no correlation

between sonication time and nanoparticle activity. These results high-

light the complexity of nanoformulation-brain interactions. The

nanoformulation methodologies affect nanoparticle characteristics in

a way that can be quantified by queries developed for the database.

However, the relationship between the nanoformulation physical vari-

ables and nanoparticle activity is still difficult to understand. The

F IGURE 5 Heatmap of nanoprecipitation methodology variables, dynamic light scattering characterization results, and LDH assay results for
(A) nanoprecipitation and (B) double emulsion experiments in brain slices with Pearson correlation as the colormap and explicitly stated in each
box. (C) Heatmap of nanoformulation methodology data for double emulsions with varying sonication times versus dynamic light scattering
characterization data, nanoparticle activity (NP Act), and supernatant activity (Sup Act) with color associated with Pearson correlation as colormap
and explicitly stated in each box
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nanoformulation-brain database provides further insight into the com-

plexity of the data via flexible queries such as queries 10a, 10b, and

11. The relationships between nanoparticle characteristics and biolog-

ical outcomes quantified by the database allow researchers to select

already developed nanoformulations with desired outcome in previ-

ously studied biological models for application in new models or alter-

native species. Additionally, the researcher may select a desired

biological outcome for a specific nanoparticle batch and trace it back

to the methodological variables that produced the nanotherapeutic to

enhance or optimize the current outcome. For example, a researcher

may determine that a specific nanoparticle batch produces the desired

response from an LDH assay, so the researcher then reproduces the

original nanoparticle batch while slowly altering ZP or size to deter-

mine an optimal range for nanoparticle characteristics of a specific

methodology that still produce the desired outcome.

Utilizing a database for nanotherapeutic development and biological

application improves data connectively across diverse and variable sets

within academic laboratories. To successfully build and use formulation

databases, traditionally experimental wet-labs will either need to commit

to learning database fundamentals or outsourcing database development

and maintenance. Fortunately, developing and building databases is a

standard computer science and data science practice, and ample informa-

tion is available for free or paid online for mastering SQL and database

development within a few months. Once an experimental lab has data-

base development knowledge, each lab can assess and connect their own

methodologies through entity-relationship diagram design as we did with

LucidChart or with similar visual graphic software. From there, laborato-

ries partake in cleaning, standardizing, and implementing data upload prac-

tices for their own database according to the specifics of the data. The

created database with SQL abilities enables each lab to use their scientific

expertise to connect biological variables of interest with methodological

variables that the lab can control or manipulate.

Alongside increasing data connectivity by improving the searchability

of interconnected variables from biological and formulation methodolo-

gies, the database also highlights experimental research gaps. For exam-

ple, the relationship between nanoformulation methodology and LDH

assay differs for nanoparticles with similar characteristics such as neutral

charge and sub 114 nm, but that are made via double emulsion or

nanoprecipitation. Size, ZP, and PDI with DLS are not sufficient character-

izations to fully elucidate the relationship between the chemistry or mate-

rial composition of the nanoformulations with different formulation

methodologies and resulting different biological outcomes. In this case,

the database has helped identify a needed area of experimental explora-

tion. With additional build-out of the database to include more features

and data, increased visualizations and insights will shed light on the rela-

tionships between nanoformulation methodology, nanoparticle characteri-

zation, and biological outcome.

While the nanoformulation-brain database we developed is cur-

rently tailored to our lab, our methodology and applications are general-

izable across research laboratories while being extendable to start-up

and large pharmaceutical applications. Outside of academic laboratories,

start-ups and larger pharmaceutical companies are likely familiar or

already utilizing databases with best business practices for product

tracking and quality control. However, these companies could consider

building and integrating databases to enhance product development

and information connectivity during the research and development to

manufacturing process. Both start-ups and big pharmaceutical compa-

nies can follow the methodology applied here for connecting biological

outcome variables to methodological features via each business's spe-

cific experimental metadata while extending database connectivity with

federally approved drug and therapeutic product databases for

enhanced drug development capabilities.

To improve the database as a tool to build translational capability,

several current limitations of the nanoformulation-brain database are

important to note and belong in two groups: software development and

the nature of experimental work. Currently, the database does not

include easy-to-use graphical interfaces or methodologies for automatic

data upload. We need to develop an interface for data upload by

researchers without data science or computer science expertise as well

as procedures for regular system back-up for local data storage. Addi-

tionally, experimental data can have high noise, vary in quality

depending on methodology or researcher, and is often in a continuous

state of optimization or evolution. To improve the database, future

work will develop a tagging system so researchers can annotate specific

data with qualitative notes that may impact the integrity of the data

such as contamination, user error, or data obtained during optimization

or training of specific methodologies.

Therefore, we envision future work in three areas: robust data-

base development, database-enabled drug screening, and experimen-

tal integration with molecular modeling. The first goal, to develop a

robust database, will create a database that is open access, easy to

contribute to, simple to query, and includes quality checks for data

accuracy. Additionally, to apply the database as a nanotherapeutic

screening method, we aim to integrate and validate the database-

enabled OWH model results with additional biological characteriza-

tion methods and nanoparticles with a wide range of physical and

drug-loading characteristics. Finally, computational modeling for nan-

otherapeutics provides large volumes of information to inform better

nanotherapeutic development. An experimental nanoformulation-

brain database integrated with the wealth of information from compu-

tation modeling enabled by machine learning enables high-throughput

insight between modeled and experimental nanotherapeutics and

experiment-informed prediction of biological outcome. Databases are

an organized way to store and access years of nanoformulation and

biological data to increase insight and connectivity of physical, chemi-

cal, and biological characteristics.

4 | CONCLUSIONS

We put forward that a preclinical experimental database can facilitate

translation for nano-based neurotherapeutics by connecting

nanoformulation methodology and nanoformulation characterization

with biological outcomes. Both nanotherapeutics and the brain have

similarities in the level of complexity—the physical, chemical, and biologi-

cal interdependencies and environment-dependent attributes create a
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vast design and application space. Tailoring nanotherapeutic design such

that nanotherapeutics can overcome biological barriers and reach target

sites at therapeutically relevant concentrations remains a need in the

nanomedicine field.24 In addition, limitations in measuring multi-faceted

in vivo interactions in clinically relevant models of brain disease can limit

nanotherapeutic translation for non-cancerous brain diseases.25,26 Our

nanoformulation-brain database connects nanoformulations to biological

applications through experimental details. The database builds a platform

that provides additional insight into 6 years of nanoformulation develop-

ment, including the ability to query nanoformulations based on PDI, ZP,

and nanoparticle size. We also developed queries that return all

nanoformulations made with specific methodologies, loaded with a spe-

cific drug, or formulated with certain surfactants or polymers. We demon-

strated the capacity of our database for drug screening using heat maps

of double emulsion and nanoprecipitation methodologies and their effects

on a measure of brain cell viability. Our querying results indicate different

strengths and patterns of correlations for nanoparticle physicochemical

properties and formulation methodologies with biological outcome. Based

on this initial investigation, well-designed nanoformulation-brain data-

bases have the potential to improve preclinical neurotherapeutic insight

and alleviate bottlenecks in clinical translation.
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